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Extinctions of local subpopulations are common events in nature. Here, we ask whether such extinctions can affect the design

of biological networks within organisms over evolutionary timescales. We study the impact of extinction events on modularity

of biological systems, a common architectural principle found on multiple scales in biology. As a model system, we use networks

that evolve toward goals specified as desired input–output relationships. We use an extinction–recolonization model, in which

metapopulations occupy and migrate between different localities. Each locality displays a different environmental condition

(goal), but shares the same set of subgoals with other localities. We find that in the absence of extinction events, the evolved

computational networks are typically highly optimal for their localities with a nonmodular structure. In contrast, when local

populations go extinct from time to time, we find that the evolved networks are modular in structure. Modular circuitry is selected

because of its ability to adapt rapidly to the conditions of the free niche following an extinction event. This rapid adaptation

is mainly achieved through genetic recombination of modules between immigrants from neighboring local populations. This

study suggests, therefore, that extinctions in heterogeneous environments promote the evolution of modular biological network

structure, allowing local populations to effectively recombine their modules to recolonize niches.
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Extinctions occur on many scales. Mass extinctions that elim-

inate a large fraction of all existing life forms are fortunately

rare (Raup 1986; Knoll 1989; Jablonski 1991; Raup 1993). More

common are extinctions of individual species (Smith 1989; Raup

1994; Newman 1997). Reasons for the observed high frequency

of species extinction are thought to include niche disappearance,

and lack of ability to evolve rapidly enough to meet changing en-

vironments (Smith 1989; Bak and Sneppen 1993; Newman 1997).

The most common form of extinctions is probably that of

localized subpopulations within a given species. Examples in-

clude extinctions of local populations of parasites when their host

dies, a forest region when fire occurs, or a population of amphib-

ians when a pool goes dry. Such an extinction of local popula-

tions is a recurrent rather than a unique event in the history of a

species.

Local extinctions and their effect on population genetics have

been extensively studied theoretically and experimentally. A use-

ful conceptual framework for these studies is the metapopulations

dynamics model, in which local populations evolve in separate

localities (habitat patches) with heterogeneous local conditions

(Hanski 1999). Individuals can migrate between neighboring lo-

calities. Local populations can go extinct, and then the free locali-

ties can be recolonized by immigrants from neighboring localities.

Most studies of metapopulations focused on questions of genetic

variability, biodiversity, and dynamics of populations (Maruyama

and Kimura 1980; Ehrlich and Ehrlich 1981; Wright 1986;

Slatkin 1987; Wade and McCauley 1988; McCauley 1991; Levin

1992; Tilman and Kareiva 1997; Hanski 1998, 1999; Pannell

and Charlesworth 1999; Carlson and Edenhamn 2000; Kassen

2002; Tilman et al. 2002; Rousset 2004; Dey and Joshi 2006;
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Keymer et al. 2006). Here, we extend this to study the effect of

local extinctions on internal organization—namely the structure

of biological networks within organisms. This topic was rarely

addressed (Wright 1986; Levin 1992; Raup 1994; Hanski and

Heino 2003). We focus on modularity—a general structural

property of biological systems.

Modularity is defined as the separability of the design into

units that perform independently, at least to a first approximation

(Wagner and Altenberg 1996; Hartwell et al. 1999; Lipson et al.

2002). Examples of modularity occur on all scales in biology. The

body plan of organisms includes limbs and organs as modules,

each with defined functions. Modularity also appears in the struc-

ture of biochemical networks within the cell: Signaling pathways,

metabolic pathways, and coregulated gene groups are all modules

of interacting molecules with a shared function and defined input

and output ports. Modularity is even observed in the structure of

many biomolecules (e.g., protein domains).

Although biological systems are commonly modular, a given

system across different organisms may vary in its degree of mod-

ularity. An example that shows a range of modularity is metabolic

networks. In previous work (Parter et al. 2007), we studied the

degree of modularity of metabolic networks across over 100 bac-

terial species using modularity-assessing algorithms (Newman

and Girvan 2004). We found that some bacterial species have

metabolic networks that are highly modular, whereas others

have nonmodular networks that cannot be separated into distinct

metabolic modules (see Parter et al. [2007] for more informa-

tion). Protein structure is another example for varying degrees of

modularity. Many proteins are composed of defined structural do-

mains such as regulatory sites, interaction domains, and catalytic

sites, each with a specific function. Other proteins such as riboso-

mal proteins are less modular and cannot be readily decomposed

into separated functional domains. Thus, modularity is not an in-

evitable feature but may be selected by evolution under certain

conditions.

The evolutionary origin of modularity is particularly puz-

zling, because evolution in simulations almost always converges

toward a nonmodular design (Kashtan and Alon 2005). The non-

modular designs are commonly selected in simulations due to the

fact that modular designs are very rare and often less optimal than

the nonmodular designs. Interestingly, even when the initial con-

dition of the simulation is a modular design, evolution typically

moves toward a nonmodular design that satisfies the same goal

(Kashtan and Alon 2005).

Explanations for the emergence of modularity can be divided

into two classes [reviewed in Callebaut and Rasskin-Gutman

(2005) and Wagner et al. (2007)]. The first class suggests that

modularity emerges as a result of a direct selective advantage

such as selection for stability (Ancel and Fontana 2000; Variano

et al. 2004), robustness (Thompson and Layzell 2000), or evolv-

ability (Wagner and Altenberg 1996; Kirschner and Gerhart 1998;

Gardner and Zuidema 2003; Hansen 2003; Sun and Deem 2007).

In the second class of explanations, no direct selective advan-

tage is associated with modularity, and instead modularity arises

as a dynamical side effect of evolution. It has been suggested

that modularity can emerge from duplications of subsystems or

genes (Calabretta et al. 1998; Ward and Thornton 2007; Sole

and Valverde 2008), subfunction fission (Force et al. 2005; Soyer

2007; Sole and Valverde 2008), or as a consequence of fluctua-

tions (Guimera et al. 2004).

Here we address the origin of modularity by studying how ex-

tinctions in heterogeneous environments affect the modular struc-

ture of networks. We use computer simulations to evolve a well-

studied computational model, networks composed of Boolean

logic gates that evolve to compute Boolean functions. These

model networks can be thought of a simple representation of

several classes of biological networks such as cell signaling and

gene regulation networks (Kashtan and Alon 2005). Such bio-

logical networks, similar to our model networks, have a set of

input ports and a set of output ports and evolve to compute out-

put values based on their inputs. For example, gene regulation

networks compute responses (e.g., gene expression) to different

signals (e.g., chemicals in the environment). Previous work on

modularity showed that such logic circuits models can serve as

representatives of a large class of simple evolutionary models in-

cluding RNA structure and neural networks (Kashtan and Alon

2005; Kashtan et al. 2007).

To evolve model networks under spatially heterogeneous en-

vironments, we use the extinction–recolonization model. We thus

evolve a metapopulation that occupies and migrates between mul-

tiple localities. The evolutionary goal is different in each locality.

We build here upon the observation that environments in nature

do not vary randomly from place to place, but rather seem to have

common rules or regularities (Levins 1968; Kashtan and Alon

2005; Tagkopoulos et al. 2008). In this view, the goal of surviving

in natural environment can be decomposed into a set of basic sub-

goals. Environmental conditions in a given locality pose a certain

combination of subgoals. Consequently, organisms of different

localities face challenges that share the same set of subgoals but

in a different combination. We model this scenario by defining a

distinct modular Boolean goal for each locality. Each such goal

is a different combination of a given set of subgoals shared by all

localities.

In previous studies (Kashtan and Alon 2005; Kashtan et al.

2007) we used a similar approach but without the spatial

component—varying goals over time instead of space. This tem-

poral variation denoted “modularly varying goals” (MVG) was

found to promote the emergence of modular structure and to

speed evolutionary rates. In contrast, the present study uses spatial

variation in goals, rather than temporal variation, and is termed
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“spatial MVG” (SMVG) here. This leads to a new phenomena

based on genetic recombinations that do not occur without the

spatial component.

We find that in the absence of extinction events the evolved

networks are highly optimal for their specific locality with a non-

modular structure. In contrast, under conditions in which extinc-

tion events occur, the evolved networks show a highly modular

structure. The modular structure is selected because it allows or-

ganisms to adapt rapidly to the conditions of the free niche, and

thus to colonize it following an extinction event. The rapid adap-

tation is mainly achieved by means of recombinations of modules

between immigrants from neighboring localities.

Results
We used a well-studied computational network model system,

Boolean logic circuits. The circuits are composed of NAND

(NOT-AND function) gates. Each circuit has several inputs (x,

y, z, w) and a single output. The wiring of the gates was encoded

in a genome made of a string of bits. The evolutionary goals were

defined by Boolean functions. The goals were composed of XOR

(exclusive-or), EQ (equal), and AND functions. The fitness of a

circuit was defined as benefit minus cost. The benefit was given

for the correctness of the desired computation and defined as the

fraction of times the circuit gives the correct output, G, when

evaluated over all possible Boolean values of the inputs. The cost

was an increasing function of the number of logic gates in the

network (see Methods).

We applied standard genetic algorithms (Holland 1975;

Goldberg 1989; Mitchell 1996) combined with a simple metapop-

ulation model (Levins 1969; Hanski 1998) with four local pop-

ulations occupying four localities. Each locality was associated

with a specific goal (a Boolean function). Members of each local

population migrated to neighboring localities with a given migra-

Figure 1. Extinction–migration model with local populations occupying four localities. Arrows represent migration routes between

localities. The evolutionary goal in each locality is represented as a Boolean function G. (A) Homogeneous case (HG), where localities

have identical goals (e.g., goal G1) (B) Heterogeneous case, where localities each have a different goal. Each goal was a different

combination of the same set of subgoals (spatial modularly varying goals [SMVG]). In this example, the goals are an AND function on

different combinations of XOR and EQ functions.

tion probability (see Methods) following a stepping stone model

(Kimura and Weiss 1964) (Fig. 1).

In our simulations, we start with initial populations with

random genomes. In every generation the fitness of each circuit

is computed according to the goal in its current locality. Circuits

with higher fitness have a higher probability to proliferate to the

next generation. Recombinations (crossovers) and mutations were

applied as genetic operators. The present results are insensitive to

the number of localities, and to the migration and mutation rates

(details of this insensitivity are given in a later section).

CIRCUITS WITH A NONMODULAR STRUCTURE

EVOLVE IN HOMOGENEOUS ENVIRONMENT WITH NO

EXTINCTIONS

We begin with a scenario in which all localities have an identical

goal (homogenous goal, abbreviated “HG”). For clarity, we will

present results for one goal in detail, goal G1 = (x EQ y) AND

(w EQ z) as described in Figure 1A, but the same conclusions

are found for a wide range of goals as described below. The

simulation started with random local populations of Npop = 1000

individuals occupying each of the four localities. Every generation

a small fraction (MF = 0.1) of each local population migrated

to neighboring localities. Through generations, fitness increased

and after a few thousand generations the population in each of the

localities reached maximal fitness.

We analyzed the structure of the evolved circuits. We find

that the evolved circuits had a nonmodular structure with a small

number of gates (11 gates in the example, Fig. 2A). The circuits

were highly optimal for the goal: they achieved the maximal

benefit (solved the computation without errors) with a minimal

cost (there exists no smaller circuit that solves G1).

We repeated the simulations with three other HGs held

same in all localities, G2–G4 defined in Figure 1B, that were

composed of various combinations of XOR, EQ, and AND

EVOLUTION 2009 3
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Figure 2. Structures of evolved circuits are nonmodular in HG and modular in SMVG with extinctions. (A) A typical circuit evolved

without extinction in a homogeneous environment. Localities all had the same goal G1 = (x EQ y) AND (w EQ z). The circuit has a

nonmodular structure. The gray gates represent NAND gates. Similar nonmodular circuits evolve also in the case in which localities

had spatial modularly varying goals (SMVG) with no extinctions. (B) An example of circuits evolved when localities displayed spatial

modularly varying goals (SMVG) with extinction events. The circuits are modular, with distinct structural modules for the EQ, XOR,

and AND computations (shown in cyan, yellow, and brown respectively). The circuits evolved in each locality were composed of the

combinations of modules that satisfied the local goal.

operations. We quantified the modularity of the evolved circuits

using a network modularity measure, Qm (Newman and Girvan

2004; Kashtan and Alon 2005), (See Methods for details). Un-

der this normalized measure, nonmodular networks are charac-

terized by Qm close to zero, whereas modular networks typi-

cally show Qm values above 0.3. Note that for each of the goals

G1–G4 there exist many different circuits that achieve the goal

(solve it perfectly) with a wide range of Qm values (Fig. 3A).

The circuits evolved toward any of the different spatially homo-

geneous goals G1–G4, had low values of this measure Qm =
0.15 ± 0.02 [mean ± SE] (Fig. 4A), indicating nonmodular

solutions.

EXTINCTIONS IN HOMOGENEOUS ENVIRONMENTS

DO NOT INCREASE MODULARITY

Next, we evolved metapopulations under the same spatially ho-

mogeneous goals, but now with extinction events. An extinction

event occurred every Ex = 100 generations in a randomly chosen

locality. When an extinction event occurred, the population of

that locality was eliminated and immigrants from neighboring lo-

calities established the new population, competing for the empty

locality. We find that the evolved circuit populations showed sim-

ilar low modularity with Qm = 0.14 ± 0.02 (Fig. 4A). Thus,

extinctions in a homogeneous environment did not have a sig-

nificant impact on the modularity of the evolved circuits. This

conclusion was found for a range of extinction rates Ex spanning

at least three decades.

EXTINCTIONS IN A HETEROGENEOUS

ENVIRONMENTS INCREASE MODULARITY

We next considered a situation in which localities had different

goals as opposed to identical goals (see Fig. 1B), with SMVG.

Each of the goals was composed of a different combination of

the same set of subgoals: “EQ” (equal) and “XOR” (exclusive-or)

functions (Fig. 1B). This set of MVG was identical to the set

of goals discussed above in the homogeneous HG simulations,

except that in the present case each locality had a different goal

whereas in the HG case all localities had the same goal.

We repeated the simulations, now with SMVG localities, with

and without extinction events. In the absence of extinction each

local population evolved a different highly optimal circuit species

that perfectly solved the goal of that locality with a minimal cost.

The evolved populations showed low modularity Qm = 0.16 ±
0.02 (Figs. 2A, 3B, and 4A).

A striking difference was found when we considered extinc-

tion events in heterogeneous SMVG localities. We find that the

circuit populations evolved in the presence of extinctions (Ex =
100 generations) showed high modularity in all localities with
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Figure 3. Circuits evolved under SMVG are more modular than

most circuits that solve the same goals. (A) Normalized modular-

ity measure (Qm) distribution of randomly sampled (nonevolved)

circuits that perfectly solve the goal G4 = (x XOR y) AND (w XOR

z). The distribution is for ∼300 circuits that solve the goal but were

generated by an optimization algorithm rather than by an evolu-

tionary process. (B) Qm distribution of evolved circuits that solve

the goal G4. The circuits evolved under spatial modularly varying

goals (SMVG), with and without extinctions (Ex = 100).

Qm = 0.40 ± 0.03 (Figs. 3B and 4A). Examples of evolved cir-

cuits are shown in Figure 2B. The circuits evolved modules that

correspond to the subgoals shared by the different varying goals:

modules that compute XOR and EQ, combined with a module

that computes AND.

The modular circuits were found to be suboptimal in terms

of number of components. The circuits solve the goal perfectly,

but on average they are larger by one gate, which is reflected in

a mean reduction of 0.05 in their fitness (the fitness cost of an

additional gate, see Methods). For example the modular circuits

for G1 are now composed of 12 gates as opposed to 11 gates with-

Figure 4. Modularity of evolved circuits as a function of gener-

ations. (A) Modularity through generations under four different

scenarios. The graphs describe mean modularity measure, Qm, of

all four local populations. (1) homogeneous localities (HG) with

identical goals for all localities (G1–G4), no extinctions. (2) homo-

geneous localities (HG) with identical goals for all localities (G1–

G4), with extinctions (Ex = 100 generations). (3) heterogeneous

localities with spatial modularly varying goals (SMVG composed

of G1–G4), no extinctions. (4) heterogeneous localities with spa-

tial modularly varying goals (SMVG composed of G1–G4), with

extinctions (Ex = 100 generations). Npop = 1000. Simulations in-

cluded mutations and recombinations as genetic operators. Data

are from 30 simulations for each of the scenarios. Error bars are

smaller than the symbols on the lines. (B) Same as in (A) but for

simulations without recombinations (asexual populations, with

mutations only). Npop = 5000, Ex = 20.

out extinctions, see Figure 2. In other words, modularity evolves

despite its cost.

MECHANISM FOR THE EMERGENCE OF CIRCUITS

WITH A MODULAR STRUCTURE

Why do modular circuits evolve when we introduce extinctions

in a heterogeneous environment? Whenever an extinction event

occurs, a free niche is created (a free locality). Immigrants from
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neighboring localities then compete to colonize the locality. Be-

cause the goal of the free niche is a modular variation on the

goals of the neighboring localities, circuits with a modular de-

sign can adapt rapidly to achieve the new goal. Thus, over many

generations, nonmodular, highly adapted circuits will be selected

against, or simply be eliminated by an extinction event. The mod-

ular circuits, in contrast, will be selected for their ability to rapidly

fit the freed niches.

ADAPTATION TO FREE NICHES IS ACHIEVED MAINLY

BY GENETIC RECOMBINATION

In the present simulations, rapid adaptations occur mainly due

to recombinations (crossovers) of two immigrants coming from

two different neighboring localities. For example, following an

extinction event in locality 1 (with goal G1), a recombination

between a modular immigrant from locality 2 (that has the EQ

module on the inputs x and y) and a modular immigrant from

locality 3 (that has the EQ module on the inputs w and z) is likely to

yield a high fitness circuit for G1 (Fig. 2B). In this way, the fitness

of the immigrant population in a locality following an extinction

event recovers rapidly. Typically, in only a few generations the

new immigrants achieve mean fitness that is comparable to the

fitness of the extinct previous population (Fig. 5).

ANCESTRAL HISTORY IN SMVG TRANSITS BETWEEN

FREED LOCALITIES

To better characterize the evolutionary process, we examined

the ancestral history of individuals that survived evolution with

SMVG and extinctions. We tracked the localities in which the

ancestral line lived over the generations (Fig. 6). We find that

the ancestral line repeatedly moved to new localities that had just

undergone extinction (Fig. 6A). The probability of a successful

ancestral migration to move to a just-extinct locality was 0.87 ±
0.03, which is far more often than expected at random (0.22 ±
0.02, P < 0.001).

A similar analysis in a simulation without extinctions showed

that ancestors of survivors had a very low probability to have un-

dergone migrations (Fig. 6B). On average, a successful migration

in the ancestral line happened every more than 10,000 genera-

tions as opposed to every 260 ± 20 generations in a scenario with

extinctions (Ex = 100). Thus, survivors in a scenario with ex-

tinctions effectively undergo temporally varying goals, a scenario

known to promote modularity (Kashtan and Alon 2005; Kashtan

et al. 2007). In contrast, survivors in a scenario without extinc-

tions effectively evolve under a constant, temporally unchanging

goal (Fig. 6B).

MODULARITY IS INCREASED UNDER A WIDE RANGE

OF EXTINCTION AND MIGRATION RATES

We also studied the effect of varying the model parameters. We

evolved metapopulations with SMVG localities under various ex-

Figure 5. The fitness of the metapopulation along SMVG evolu-

tion with extinctions. (A) Mean fitness of each local population

(shown in different colors) versus generations. (B) Zoom into fit-

ness around several extinction events. Following an extinction

event (arrow) the mean fitness in that locality initially drops, and

then recovers rapidly. Ex = 1000 generations, Npop = 1000.

tinction rates from an extinction event every single generation,

Ex = 1, to an event every Ex = 105 generations (which is equiva-

lent, in our simulations, to virtually no extinctions at all). We find

that high modularity evolved over three orders of magnitude of

extinction rates (Fig. 7A). After reaching a peak at around Ex = 20

generations, the modularity measure Qm decreases with increas-

ing times between extinctions in an approximately logarithmic

manner.

What happens if extinction events are not periodic but rather

a stochastic event? We simulated such a scenario with extinction

events drawn randomly from a log-normal distribution with mean

Ex = 20 generations (SD = +180, −18). Circuits evolved under

such a stochastic extinction scenario were found to be modular

with Qm = 0.33 ± 0.03.
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Figure 6. Ancestral history in SMVG evolution transits between freed niches. Shown is a typical trajectory of the localities where

the ancestors of a survival circuit evolved through generations. Data are shown for the best circuit from locality 1 at the end of 10,000

generations simulation. Vertical lines represent migration events. Red points represent extinction events. (A) With extinctions. (B) Without

extinctions. Simulation was without recombinations, to allow following a pure nondivergent evolutionary path. Ex = 100 and Npop =
2500. Similar results were found with recombinations.

We find that modularity emerged, in the presence of extinc-

tions, also under a wide range of migration rates (fraction of

the population that migrates every generation). Modular circuits

evolve from very low rates of MF = 0.01 to very high rates of

MF = 0.6 (Fig. 7B). Under extremely high migration rates (MF >

0.7), the metapopulation typically does not achieve any of the

goals, and very low modularity is found both with and without

extinctions.

Finally, we asked what happens if migration rate is not con-

stant but rather changes stochastically. Simulations of such a situ-

ation under SMVG with no extinctions with stochastic migration

rates, drawn randomly from a log-normal distribution with mean

MF = 0.1 (SD = +0.4, −0.08), yielded relatively low modularity

Qm = 0.22 ± 0.03. Thus, even occasional extreme migration rates

do not seem to be enough to generate modularity in the absence

of extinctions.

EXTINCTIONS IN HETEROGENEOUS ENVIRONMENTS

REDUCE SPECIATION AMONG LOCALITIES

We further analyzed the impact of extinction events on the ge-

netic diversity of the metapopulation evolved under SMVG. We

first analyzed the genotypes of populations evolved without ex-

tinctions. We find that individuals from different localities had

relatively distant genomes, differing in about 40% of their ge-

nomic positions (mean relative Hamming distance was HD = 0.4

± 0.02). A standard measure for genetic diversity of metapop-

ulations developed by Wright (1951) and later enhanced to fit

genomic positions diversity by Nei (1973), shows a large diver-

sity, FST = 0.53 ± 0.01 (Table 1 and Methods). Interbreeding

of individuals from two different localities (e.g., a recombination

between a native individual and an immigrant) thus has a very low

probability to survive. This is the reason that immigrants typically

failed to compete with the native population of a given locality.

Thus, each local population evolved into an independent species

that was highly optimal to the locality goal.

A different picture was observed in the presence of extinc-

tions. We find that the genotypes from different SMVG localities

were relatively similar, differing in only 20% of the genomic posi-

tions (mean Hamming distance [HD] = 0.2 ± 0.03). The positions

that showed high variation between populations tended to encode

for the specific gates that were rewired when a XOR module

switched to an EQ module. The metapopulation showed much

lower between-subpopulation variation (FST = 0.28 ± 0.01) than

in the lack of extinctions case (FST = 0.53 ± 0.01). Indeed, in-

terbreeding of individuals from different local populations was

the main mode of adaptation to free niches following extinction.

Thus, extinctions seem to preserve the metapopulation as a single

highly adaptive species, with spatial allelic variations.

We also explored the impact of migration rates on genetic

diversity. We find that in the presence of extinctions the impact of

EVOLUTION 2009 7
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Figure 7. Effects of simulation parameters on modularity and ge-

netic diversity. (A) The effect of extinction rate (Ex) on modularity

measure (Qm) in SMVG evolution. Each point represents the mean

Qm (±SE) of the four local populations, MF = 0.1. (B) The effect

of migration rate (MF ) on modularity measure in the presence of

extinctions (Ex = 100) and without extinctions. For both (A) and

migration rate on FST is minor compared to Brown and Pavlovic

(1992) . This holds for a wide range of migration rates tested from

MF = 0.01 to MF = 0.7 (Fig. 7C).

CIRCUITS WITH A MODULAR STRUCTURE CAN

EVOLVE ALSO IN THE ABSENCE OF

RECOMBINATIONS, BUT ADAPTATION IS SLOWER

Finally, we asked whether the same results are observed in the

absence of genetic recombinations, a case that corresponds to

species with asexual reproduction (no recombinations between

different members of the population). It also applies to the case

in which each locality hosts a different species, which cannot

interbreed. We find that the results hold also in this case of no

recombinations: modularity emerges only if extinction events are

introduced in heterogeneous localities (Fig. 4B).

Note that in this case, the mode of adaptation for free niches

was mutations rather than recombinations. Adaptation was some-

what slower than in the case of recombinations (two to three

generations were typically required for a first fully adapted or-

ganism to appear, as opposed to a single generation in the case

with recombinations). Modular circuits evolved with the ability

to rapidly adapt to the goals of their neighboring localities within

one or two mutations that rewired a XOR module to an EQ mod-

ule or vice versa (a similar mechanism to that described in Parter

et al. [2008]). In summary, extinction events in asexual evolution

is found to preserve the metapopulation as a single species with

a modular structure with mutations as the key mode of adapta-

tion.

Discussion
The present study suggests that extinctions in heterogeneous envi-

ronments can affect the design of networks within simple evolved

computational “organisms”. Extinction events substantially in-

crease modularity in heterogeneous environments that display

spatial MVG. Through generations, the organisms sample re-

cently extinct localities by migration and “learn” the set of sub-

goals shared by all localities. They are thus able to evolve a

module for each of the subgoals. The modularity allowed a rapid

adaptation to the niches freed by extinction events, by rewiring,

or recombining modules to fit the goal in the free niche. Rapid

adaptation to free niches is obtained predominantly by genetic

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(B) the mean is for 20 simulations of length 105 generations, and

Qm values were averaged over the last 3 × 104 generations of

each simulation. (C) The effect of migration rate (MF ) on genetic

diversity measure (FST) of the metapopulation in the presence of

extinctions (Ex = 100) and without extinctions. Npop = 1000 for

(A),(B) and (C). Data are of 20 simulations.
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Table 1. Modularity and genetic diversity are affected by extinctions in a heterogeneous environment. See Methods for definitions of

HDs, HDtot and FST. Mean±SE is presented for all the measures for at least 30 independent simulations. FST had P<0.001 for all cases

(P-value was computed using the permutation test [Raymond and Rousset 1995]).

Localities Scenario Modularity (Qm) HDs HDtot FST

With recombination
Homogeneous (HG) No extinctions 0.15±0.02 0.08±0.01 0.08±0.01 0.02±0.01

Extinctions 0.14±0.02 0.12±0.02 0.12±0.02 0.00±0.01
Heterogeneous (SMVG) No extinctions 0.16±0.02 0.16±0.01 0.33±0.01 0.53±0.01

Extinctions 0.40±0.03 0.12±0.01 0.17±0.01 0.28±0.01
Without recombination

Homogeneous (HG) No extinctions 0.04±0.02 0.16±0.02 0.16±0.02 0.02±0.01
Extinctions 0.11±0.02 0.12±0.02 0.12±0.02 0.02±0.01

Heterogeneous (SMVG) No extinctions 0.09±0.02 0.16±0.01 0.36±0.01 0.55±0.01
Extinctions 0.42±0.03 0.11±0.01 0.15±0.01 0.25±0.02

recombinations (crossover, sex) between immigrants from two

distinct neighboring localities. In addition, we find that in the

absence of extinctions local populations eventually diverged into

different species, each highly optimized for the conditions in its

own locality, with a nonmodular structure. Extinctions reduce

this tendency to speciation and lead to the emergence of a single

species with a modular structure and spatial allelic variations.

How relevant are these results to natural evolution? Exam-

ples of metapopulations that spread over localities with heteroge-

neous conditions are very common in nature. A large fraction of

species on earth are highly specific in their habitat requirements

and live in rather separated local populations with extinctions–

recolonizations dynamics (Wright 1986; Levin 1992; Tilman and

Kareiva 1997; Hanski 1999). A well-studied example is of the

Glanville fritillary butterfly (Melitaea cinxia) in the southwest of

Finland (Hanski 1998, 1999). The butterfly persists in numerous,

small, more-or-less isolated populations breeding on dry mead-

ows. Extinction of local populations is a common event, typically

followed by recolonization by new immigrants (Hanski 1998,

1999). There are two factors that have a major effect on the sur-

vival probability of the butterfly (1) the availability of a larval host

plant and (2) the existence of parasitoids. There are two primary

species of host plants and two primary types of parasitoids that

attack the butterfly larva, and both factors vary widely between

localities (Kankare et al. 2005). If adaptation to host plants and

parasitoids can be considered as separate subgoals, the butterflies

are faced with SMVG. The SMVG are composed of two subgoals,

each of which can be one of two possibilities (analogous to the

subgoals in our simulations). More generally, assuming that the

niches in nature display variations on a set of biological subgoals,

the present study suggests that organisms with modular networks

will have an advantage in adapting to free niches more rapidly.

Several currently studied ecosystems may be used to

empirically test the effects of local extinctions. These include

forests with frequent fires (York 1999; Crawford et al. 2001) or

sea-floor regions that are recurrently damaged by trawl-fishing

(Engel and Kvitek 1998; Thrush and Dayton 2002). Trawling

is a relevant example as it effectively causes local extinctions

of sea-floor benthic communities (Engel and Kvitek 1998).

Comparisons of sea-floor benthic communities between regions

that were not trawled to ones that were frequently trawled

indicated a significance decrease in biodiversity, a change in

the community composition, and the increased abundance of

fast-growing opportunistic species such as oligochaetes and

nematodes (Engel and Kvitek 1998). These data provide evidence

for the selection due to recurrent local extinctions. The selection

pressures are similar to the ones we describe in our model:

Local extinction may promote the survival of highly adaptive

species that can rapidly fit into free niches following extinction

events.

This work relates to the large literature on evolution in chang-

ing environments, beginning with the seminal work of Levins

(1968). These studies tried to explore the interplay between en-

vironmental variation and the mechanisms for adaptation (Levins

1962, 1968; Lachmann and Jablonka 1996; Rainey and Travisano

1998; Meyers and Bull 2002). A significant body of literature stud-

ied the association between environmental variability and poly-

morphism (Levene 1953; Haldane and Jayakar 1963; Gillespie

1972; Frank and Slatkin 1990; Turelli et al. 2001), physiologi-

cal adaptations (Schmalhausen 1949; Schlichting and Pigliucci

1998), probabilistic strategies (Cohen 1966; Bull 1987), develop-

mental plasticity, and alternative phenotypes (Waddington 1953;

Moran 1992). The impact of heterogeneous environments on pop-

ulation dynamic (Levin 1976) and the evolution of generalists and

specialists (Van Tienderen 1991) was also extensively studied.

The present study aims at understanding additional mechanism

for coping with varying environment, namely the modular archi-

tecture of biological networks.
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The present study extends our previous studies of modularity.

In our previous study (Kashtan and Alon 2005), we showed that

environment that changes with time can promote the evolution of

modularity. In this study, we extend this by demonstrating how

spatial variation can also promote modularity. Modularity is en-

hanced when spatial variation is combined with local extinctions.

As shown in Figure 6, organisms evolved in spatially varying

environment with extinctions effectively face temporally varying

environments.

However there is an important difference between this study

and our previous studies on temporally varying goals (Kashtan

and Alon 2005). We find that in a population evolving under tem-

porally varying goals, the primary means of adaptation to new

goals was mutations. Adding recombination did not affect evo-

lution. Here we studied variations in space rather than in time,

so that several local populations evolved concurrently in several

localities, each under a different goal. In contrast to (Kashtan and

Alon 2005), we find that recombinations of genomes from differ-

ent local populations are the primary means of adaptation to empty

niches. The genetic diversity between subpopulations makes re-

combination effective, a diversity that is lacking in our previous

studies that employed a single population. This highlights the use-

fulness of recombinations in metapopulations that evolve in het-

erogeneous environments with occasional extinctions. This view

may add to the theory that aims to explain the prevalence of sexual

reproduction (Maynard-Smith 1978; Kondrashov 1998; Otto and

Lenormand 2002; Cooper 2007).

The present results may also be relevant for extinctions that

eliminate an entire species rather than local populations, and even

for the rare mass-extinctions of a large number of species, as

is seen from our results of simulations without recombinations.

The theory further predicts that the more rare the extinctions, the

less modular the networks and the higher is the tendency to form

specialized species. This prediction can in principle be tested by

comparing modularity levels of biological networks of closely

related organisms from natural environments with different ex-

tinction rates, as demonstrated in Parter et al. (2007) and Kreimer

et al. (2008).

In summary, the present study demonstrates that extinctions

may provide a selective pressure on the internal network structure

of evolved organisms. Extinctions create free niches, and thus

pose a selective pressure for designs that can rapidly adapt to these

niches. If the free niches and their neighboring populated niches

share subgoals, networks with a modular architecture tend to be

selected over networks with a nonmodular architecture. Genetic

recombination is a major driving force in this adaptation, by its

power to recombine modules from neighboring local populations.

It will be interesting to further study the impact of extinction on the

design principles (Alon 2007) of biological molecules, networks,

and organisms.

Methods
EVOLUTIONARY SIMULATIONS WITH LOGIC

CIRCUITS MODEL

We used standard genetic algorithms to evolve Boolean logic

circuits composed of two-inputs NAND gates. Each circuit cor-

responded to a binary genome that specified the connections be-

tween the gates, as described in (Kashtan and Alon 2005). The

settings of the simulations were as follows: A population of Npop

individuals was initialized to random binary genomes, in each of

the four localities. The genomes were composed of 13 genes: 12

genes that coded for gate wiring and a single gene that coded

for the output wiring (Kashtan and Alon 2005). In each genera-

tion, all the individuals in each local population were evaluated

to compute their fitness F, defined as the fraction of all values of

the inputs that produce the goal output minus the cost associated

with the number of gates used in the circuit (see below). In each

local population, pairs of circuits were chosen in accordance with

their fitness, with probability proportional to exp(t × F) (t = 30 in

our simulations), recombined (applying crossover operator), and

randomly mutated (mutation probability Pm = 0.7 per genome).

Simulations lasted 105 generations. The local-population size for

the presented results with recombinations was Npop = 1000, and

without recombinations Npop = 5000. The results hold also for

larger local populations (sizes up to Npop = 50,000 were tested);

the presented sizes were empirically determined to be the small-

est to consistently yield the present results. Qualitatively similar

results were observed also with different mutation rates, selection

strategies (e.g., different t in the selection probability, or using

an elite selection strategy (Vasconcelos et al. 2001)) and different

modular goals (replacing AND with OR functions, goals with six

inputs as in (Kashtan et al. 2007)).

FITNESS CALCULATION

Fitness of a circuit is defined as F = δ − η, where δ (the benefit)

is equal to the fraction of all possible input values for which

the circuit gives the desired output. The cost η is defined as the

number of effective gates in the circuit (gates with a path to the

output) above a predefined number of gates (for the presented

results 10 gates, penalty was 0.05 for each additional gate).

MIGRATION

Migrations were performed as described by the arrows in Figure 1.

Every generation, emigrants were chosen randomly from each

local population. The number of emigrants was MF = 0.1 of

the population size. Different values of MF ranging from MF =
0.01 to MF = 0.7 were tested and yielded qualitatively similar

results. Migration destination was randomly chosen according to

the migration graph (Fig. 1). After each migration event, to keep

the population size fixed, population was selected proportionally

to fitness. Qualitatively similar results were obtained using two
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different migration rules: (1) emigrants were selected randomly

with dependency on fitness—individuals with median fitness had

higher probability to emigrate. (2) Emigrants were selected ran-

domly from the population without dependency on fitness.

EXTINCTIONS

Extinction events eliminated a local population chosen at random

and occurred every Ex generations. Each extinction event was

followed by a recolonization by migrations from neighboring

localities. For simplicity, we considered a fixed local-population

size. In “just” freed niches, immigrants were expanded to the full

local-population size by proportional selection with replacements

as described above.

POPULATION GENETIC SUBDIVISION MEASURE

FST measure (Wright 1951; Nei 1973; Raymond and Rousset

1995) was computed by: FST = (HDtot − HDs)/(HDtot), where

HDtot is the relative number of positions by which two genomes

from the metapopulation are different (mean relative HD). HDs

is the same measure for a single subpopulation. Low FST val-

ues (close to zero) indicate that the genetic diversity within and

between subpopulations is similar, suggesting that all localities

represent a single species. High FST values (0.3–1) indicate that

genetic diversity between subpopulations is much higher than

within the subpopulations, suggesting different species.
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