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ABSTRACT
Summary: Biological and engineered networks have recently
been shown to display network motifs: a small set of charac-
teristic patterns that occur much more frequently than in ran-
domized networks with the same degree sequence. Network
motifs were demonstrated to play key information processing
roles in biological regulation networks. Existing algorithms for
detecting network motifs act by exhaustively enumerating all
subgraphs with a given number of nodes in the network. The
runtime of such algorithms increases strongly with network
size. Here, we present a novel algorithm that allows estimation
of subgraph concentrations and detection of network motifs
at a runtime that is asymptotically independent of the net-
work size. This algorithm is based on random sampling of
subgraphs. Network motifs are detected with a surprisingly
small number of samples in a wide variety of networks. Our
method can be applied to estimate the concentrations of larger
subgraphs in larger networks than was previously possible
with exhaustive enumeration algorithms. We present results
for high-order motifs in several biological networks.
Availability: A software tool for estimating subgraph con-
centrations and detecting network motifs (mfinder 1.1) and
further information is available at http://www.weizmann.ac.il/
mcb/UriAlon/
Contact: urialon@weizmann.ac.il

INTRODUCTION
Electronic devices are usually built of recurring circuit ele-
ments. Recently, it was found that biochemical and neuronal
networks share a similar property: they contain recurring
circuit elements called network motifs. Network motifs
are subgraphs that occur in the network far more often
than in randomized networks (Milo et al., 2002). Other
types of networks such as ecological and technological net-
works contain different sets of characteristics network motifs

∗To whom correspondence should be addressed.

(Milo et al., 2004). In the case of biological regulation net-
works, it has been suggested that network motifs play key
information processing roles (Shen-Orr et al., 2002). Three
major network motifs were found in the transcription net-
work of bacteria and yeast (Milo et al., 2002; Shen-Orr et al.,
2002, Lee et al., 2002). One of these, the feed-forward loop
(FFL), has been shown theoretically to perform information-
processing tasks such as sign-sensitive filtering, response
acceleration and pulse-generation (Mangan and Alon, 2003).
The sign-sensitive filtering function of the FFL was demon-
strated experimentally using high-resolution gene expression
measurements on the arabinose utilization system of Escheri-
chia coli (Mangan et al., 2003). A second network motif
in transcription networks, the single-input module, has been
shown theoretically (Shen-Orr et al., 2002) and experiment-
ally (Kalir et al., 2001; Ronen et al., 2002; Zaslaver et al.,
2004) to generate temporal programs of expression. The tem-
poral order of expression of these genes corresponds to the
functional order of the gene products (Laub et al., 2000;
Kalir et al., 2001; Ronen et al., 2002; Zaslaver et al., 2004;
McAdams and Shapiro, 2003). Signaling networks and devel-
opmental transcription networks show these motifs, as well as
other motifs (Milo et al., 2004; Lahav et al.., 2004). More gen-
erally, network motifs raise the hope that the network function
can be understood in terms of basic computational building
blocks.

In order to detect network motifs, one needs to count the
number of appearances of all types of n-node subgraphs in
the network as well as in an ensemble of randomized net-
works. There are many isomorphic types of subgraphs with a
given number of nodes (there are 13 different types of connec-
ted, directed three-node subgraphs, 199 four-node subgraphs,
9364 five-node subgraphs, etc.). Motifs are those subgraphs
that occur significantly more often in the real network than
in randomized networks. As a stringent control, the random
network ensemble preserves the single-node characteristics
of the real network: the number of incoming, outgoing and
mutual edges for each node.
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There are therefore two main tasks in detecting network
motifs: (1) generating an ensemble of proper random net-
works (Milo et al., 2003) and (2) counting the subgraphs in
the real network and in random networks. Here, we focus on
the latter task.

Counting subgraphs in a large network is known to be a
difficult computational task. Efficient algorithms are known
for exact counting of only certain classes of subgraphs such
as cycles (Johnson, 1975; Alon et al., 1997) and cliques
(Akkoyunlu, 1973; Nesetril and Poljak, 1985), reviewed in
Bezem and Van Leeuwen (1987). Approaches to approximate
counting were developed in order to cope with the complexity
of exact counting in other types of problems (Lovasz, 1993;
Jerrum and Sinclair, 1996; Jerrum, 2003). Several sampling
algorithms were developed for enumeration of classical graph
problems such as counting Hamiltonian cycles or spanning
trees in graphs (Dyer et al., 1994; Frieze and Kannan, 1999;
Jerrum, 2003). Algorithms have been developed for finding
frequent subgraphs that recur many times in a set of networks
(Inokuchi et al., 2000; Kuramochi and Karypis, 2001). An
approach to approximating frequencies of subgraphs in a given
non-directed, labeled graph was developed by Duke et al.
(1995), based on the regularity lemma of graphs (Szemeredi,
1978; Alon et al., 1994). This algorithm has strong constraints
on the subgraph size for a given network size (on a typical
biological network of hundreds to thousands of nodes, this
algorithm is limited to three-node subgraphs). The runtime of
the algorithm grows polynomially with network size. Thus,
there is a lack of practical algorithms for counting subgraphs
in large networks.

In a previous study, we developed an exhaustive-
enumeration algorithm that counts all the subgraphs with a
given number of nodes, n, in the network (Milo et al., 2002;
Shen-Orr et al., 2002). For example, for n = 3, the algorithm
computes the number of appearances of all the 13 types of
three-node connected directed subgraphs. The performance
of this algorithm scales with the total number of n-node sub-
graphs in the network. The runtime, therefore, scales at least
as the network size. The runtime is made even longer by
the presence of hubs (highly connected nodes). Hubs gener-
ate many subgraphs combinatorially (Itzkovitz et al., 2003).
The existence of hubs is a common feature of many natural
and technological networks (Barabasi and Albert, 1999). The
number of subgraphs and the algorithm runtime also increase
dramatically for subgraphs with n ≥ 5.

In order to cope with the complexity of subgraph counting in
large directed networks, we present a probabilistic algorithm
termed the ‘sampling method for subgraph counting’. This
algorithm does not enumerate subgraphs exhaustively but
instead samples subgraphs in order to estimate their relative
frequency. The runtime of the algorithm asymptotically does
not depend on the network size. Surprisingly, few samples
are needed to detect network motifs reliably. The sampling
method is useful for analyzing very large networks or for

detection of high-order motifs, which are beyond the reach
of exhaustive enumeration algorithms.

METHODS
Subgraph concentrations
For simplicity in this study, we will consider directed net-
works with one color of edges and nodes. The number of
appearances of subgraphs of type i is Ni . The concentration
of n-node subgraphs of type i is the ratio between their num-
ber of appearances and the total number of n-node connected
subgraphs in the network:

Ci = Ni∑
i Ni

.

For example, the FFL (subgraph M4 in Table 2) appears
42 times in the E.coli gene transcriptional network studied
in Shen-Orr et al. (2002). The total number of three-node
connected subgraphs in the network is 5206, and therefore
the FFL concentration is CFFL = 42/5206 = 0.008.

Subgraphs sampling
The algorithm samples n-node subgraphs by picking random
connected edges until a set of n nodes is reached. The follow-
ing describes the random sampling procedure of one n-node
subgraph from the network: pick a random edge from the
network and then expand the subgraph iteratively by picking
random neighboring edges until the subgraph reaches n nodes.
For each random choice of an edge, in order to pick an edge
that will expand the subgraph size by one, prepare a list of all
such candidate edges and then randomly choose an edge from
the list. Finally, the sampled subgraph is defined by the set of
n nodes and all the edges that connect between these nodes in
the original network (not just the edges that were picked by
the expansion process). (See algorithm formal description in
Fig. 1.)

Exact correction for non-uniform sampling
A specific subgraph is a set of n connected nodes in the
network. The probabilities of sampling different specific sub-
graphs in the network are not equal even if they have the same
topology. In order to correct for this, we calculate the prob-
ability, P , of sampling a specific subgraph. Each subgraph
type receives a score. After each sample, we add a weighted
score of W = 1/P to the score of the relevant subgraph type.
This is repeated for a total number of samples ST. Finally, we
calculate the concentrations of all subgraph types according
to their scores.

To sample an n-node subgraph, an ordered set of n − 1
edges is iteratively randomly picked. In order to compute the
probability, P , of sampling the subgraph, we need to check all
such possible ordered sets of n− 1 edges [denoted as (n− 1)-
permutations] that could lead to sampling of the subgraph.
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Fig. 1. Sampling algorithm. Steps 1–5 represent a single sampling step; this is repeated ST times.

 

  

 

Fig. 2. Different probabilities of sampling different subgraphs. Example of a toy network with seven nodes and six directed edges. The
probabilities of sampling two different three-nodes subgraphs are different, although they both are of the same subgraph type (V-shaped
outgoing edges).

The probability of sampling the subgraph is the sum of the
probabilities of all such possible ordered sets of n − 1 edges:

P =
∑
σ∈Sm

∏
Ej ∈σ

Pr[Ej = ej |(E1, . . . , Ej − 1) = (e1, . . . , ej − 1)].

Where Sm is a set of all (n − 1)-permutations of the
edges from the specific subgraph edges that could lead to
a sample of the subgraph. Ej is the j -th edge in a specific
(n − 1)-permutation (σ ).

In Figure 2, we illustrate this procedure on a simple toy net-
work. The two specific subgraphs considered in this example,
nodes {1, 2, 3} and nodes {4, 5, 6}, have different sampling
probabilities and are assigned different weights in order to
ensure unbiased estimation of subgraph concentrations.

Calculating the concentrations of n-node
subgraphs
We define a score Si for each subgraph type i. Initially we
set all Sis to zero. For every sample, we add the weighted
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Table 1. Sampling method versus exhaustive enumeration on a WWW network

Subgraph Exhaustive enumeration Sampling method
Total no. of subgraphs 287M (runtime: 2.9 h) No. of samples

5K (runtime: 15 s)
No. of samples
50K (runtime: 37 s)

No. of samples
2.5M (runtime: 28 min)

ID Appearances Concentration (×10−3) Concentration (×10−3) Concentration (×10−3) Concentration (×10−3)

6 47 015 127 163.8 181.2 168.4 162.7

12 2 319 911 8.1 10.3 6.7 8.2

14 1 363 964 4.8 6.0 4.9 4.8

36 218 449 147 761.0 732.2 754.8 762.2

38∗ 499 763 1.74 1.97 1.75 1.73

46∗ 1 164 456 4.1 4.9 4.1 4.1

74 4 049 373 14.1 17.4 15.7 13.9

78 4 954 123 17.3 18.5 17.7 17.2

98 9474 0.030 0.006 0.048 0.030

102 40 607 0.14 0.08 0.16 0.14

108∗ 309 167 1.08 1.08 1.08 1.08

110∗ 106 614 0.37 0.51 0.37 0.37

238∗ 6 779 926 23.6 25.9 24.2 23.5

Results of the sampling method of three-node subgraphs compared with the exhaustive enumeration results, on a WWW network of the nd.edu domain. (Barabasi and Albert, 1999).
The nodes represent Web pages, and the edges represent directed hyperlinks between pages. All 13 three-node connected subgraphs appear in the network. It can be seen that as few
as 5000 samples (out of 287 million three-node subgraphs) already give quite a good estimate of all the subgraph concentrations.
∗Highlighted subgraphs were found to be network motifs.

score W = 1/P to the accumulated score, Si , of the relevant
subgraph type i: Si = Si + W . After ST samples, assum-
ing we sampled L different subgraph types, we calculate the
estimated subgraph concentrations

Ci = Si∑L
k=1 Sk

.

Runtime analyses
All runtime analysis was done on a 1.7 GHz Pentium 4 CPU
with 1 GB RAM. The loading time of the network was not
included.

RESULTS
Comparing sampling method results with
exhaustive enumeration
In Table 1, we show the results of the sampling method with
different numbers of samples for three-node subgraphs on a
WWW network (Barabasi and Albert, 1999) with 3.25 × 105

nodes, 1.46×106 edges. The total number of connected three-
node subgraphs in the network is 2.87 × 106. Running the

algorithm with as few as 5000 samples gives a good estimation
of all 13 three-node subgraph concentrations (Table 1). Even
with 5000 samples, the five network motifs (highlighted with
an asterisk) are detected as significant versus randomized net-
works due to their high Z-scores [Z = (Creal −〈Crand〉)/σrand

where Creal is the concentration in the real network, 〈Crand〉
and σrand are the mean and SD in the randomized networks]
(Milo et al., 2002). The runtime was about 500 times faster
than with the exhaustive enumeration algorithm.

In Table 2, we show the results of the sampling method
for subgraphs with n = 3, 4, 5 in a biological regulatory net-
work. We present the results for all the three-node subgraphs
that appear in the transcription network of E.coli (Shen-Orr
et al., 2002) as well as the four and five-node subgraphs that
are network motifs. It can be seen that the sampling method
estimates the subgraph concentration very accurately even for
subgraphs with a relatively low concentration (e.g. five-node
motifs with C = 10−5).

Generally, we find that in a variety of networks, net-
work motifs have relatively high concentrations. Most three
and four motifs of size 3–4 have Ci > 10−3; five-node
motifs usually have Ci > 10−5. This suggests that the
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Table 2. Subgraphs of size 3–5 in the transcriptional regulation network of E.coli

Subgraph size Subgraph Full enumeration Sampling method
ID Shape Appearances

(Z-score)
Concentration
(×10−3)

Concentration (×10−3)
(Z-score)

No. of samples

3 S1 4777 917.60 916.60 1K
(∼5K total three-node subgraphs)

S2 160 30.73 31.13

S3 227 43.60 43.64

42 8.07 8.69
M4 (z = 10) (z = 10)

4 209 2.49 2.69 10K
M5 (z = 9) (z = 8) (∼85K total four-node subgraphs)

51 0.61 0.65
M6 (z = 15) (z = 15)

5 54 0.038 0.035 50K
M7 (z = 120) (z = 30) (∼1.4M total five-node subgraphs)

271 0.189 0.196
M8 (z = 16) (z = 11)

20 0.014 0.013
M9 (z = 18) (z = 8)

18 0.013 0.014
M10 (z = 12) (z = 8)

Results of the sampling method versus exhaustive enumeration for subgraphs size of 3–5 in the transcription network of E.coli (Shen-Orr et al., 2002). For size n = 4 and 5, only
motifs are shown. Statistical significance is represented by the Z-score [Z = (Creal − 〈Crand〉)/σrand]. It can be seen that the sampling method gives a very accurate estimation with a
relatively small number of samples. Five-node subgraphs, although appearing in low concentrations, show good results with 50K samples—the total number of five-nodes subgraphs
is 1.4 × 106. All the motifs detected by exhaustive enumeration were also detected by the sampling method (with Z > 5).

sampling algorithm should prove especially effective for motif
detection.

Runtime complexity analysis
The main cost in steps 1–4 of the sampling method (Fig. 1) is
in maintaining the list of edges from which the next random
edge should be picked in each step of the sampling. In the
worst case the list length is dominated by the hub degree (D),
where D is the maximal number of edges per node in the
network. Maintaining the list includes merging edge lists and
throwing away edges that connect between nodes that were
already picked. The worst complexity is O(Dn) for every
sample of an n-node subgraph. By maintaining an efficient

data structure, this complexity can be reduced to O(n2) (see
Appendix 1).

We now estimate the complexity of calculating the probab-
ility of sampling a specific n-node subgraph (Fig. 1; step 5): In
a single (n − 1)-permutation of the subgraph edges, for
every edge we need to calculate the probability of sampling
the next edge. In order to do this, we need to calculate
the effective degree of each node (i.e. the number of edges
that expand the subgraphs by one) at each step of pick-
ing the next random edge. Using the degree of each node,
this can be done in O(n) operations. Because there are
(n − 1) steps of such iterations, we get O(n2). In sparse
networks, the number of edges, m, in a connected n-node
subgraph is typically n − 1 ≤ m ≤ Kn (K is a small
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Fig. 3. Runtime per 1000 samples for different subgraph sizes: three-
node up to eight-node subgraphs (semi-log scale). The network
analyzed is the transcriptional regulation of E.coli (Shen-Orr et al.,
2002). The scaling of the runtime of the sampling method qualitat-
ively agrees with the theoretical analysis of O(Kn−1nn+1), where n

is the subgraph size.

constant which is correlated with the average degree of nodes
in the network, (n − 1)/n ≤ K ≤ n − 1). Thus the
number of (n − 1)-permutations of edges is of the order of
O(Kn−1nn−1). In total, we get a complexity per sample of
O(n2) × O(Kn−1nn−1) = O(Kn−1nn+1). We conclude that
the total runtime of the algorithm is RS = ST×O(Kn−1nn+1).
This agrees qualitatively with runtime measurements for
sampling subgraphs of sizes 3–8 (Fig. 3) on the transcription
network of E.coli.

Analyzing the runtime of the sampling method
versus an exhaustive enumeration
We would like to evaluate the ratio, r , of the runtime of
the exhaustive enumeration algorithm (RE) and the runtime
of the sampling method (RS). The runtime of exhaustive
enumeration algorithms is dominated mainly by the total
number of subgraphs; therefore, its complexity is �(n2T ),
where T is the total number of connected n-node subgraphs
(n2 is the minimal complexity of analyzing the adjacency
matrix of a subgraph of size n). The total number of con-
nected n-node subgraphs in networks that contain a hub
is dominated by the hub degree (D) and is approximately
T = Dn−1 (Itzkovitz et al., 2003). For such networks the
runtime is �(n2Dn−1). The runtime dependence on network
size (N ) comes from its effect on D. In networks without
hubs, the total number of connected n-node subgraphs is
approximately T = N〈d〉n−1, where 〈d〉 is the average

Fig. 4. Runtime of the sampling method versus an exhaustive
enumeration as a function of network size (log–log scale). The net-
works are synthetic scale-free networks (γ = 2) with equal average
connectivity (〈d〉 = 2.4). The hub degree is 10% of the total number
of nodes. The sampling method was run with 100 000 samples for
all the networks. The runtime of the exhaustive enumeration scales
as the total number of subgraphs, while the runtime of the sampling
method is almost constant.

degree of the nodes. For the simplicity of the analyses we
assume K = 1.

For networks that contain a hub, the runtime ratio is

r = RE

RS

= �

(
n2Dn−1

nn+1
· 1

ST

)
= �(D/n)n−1 · 1

ST
.

For a network with hub degree D = 1000, and ST = 105

samples, we find for three-node subgraphs r ∼ 1, for
four-node subgraphs r ∼ 150 and for five-node subgraphs
r ∼ 1.5 × 104. We find that for subgraphs of four nodes
and above, the runtime of the sampling method is much
smaller than that of an exhaustive enumeration algorithm
(Fig. 4).

For a network that does not have hubs, the ratio is

r = RE

RS

= �

(
n2N〈d〉n−1

nn+1
· 1

ST

)
= �(〈d〉/n)n−1 · N

ST
.

For such a network with N = 10 000, 〈d〉 = 3, ST = 105,
we find for a three-node subgraph r ∼ 0.1, for a four-node
subgraph r ∼ 0.05 and for a five-node r ∼ 0.01.

We conclude that for networks without hubs, the runtime
of the sampling method is not smaller than the exhaustive
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enumeration algorithm. However, it can be useful even in
this case to run the sampling method with a small number
of samples to get a low accuracy estimate of subgraph con-
centrations or for the purpose of detection of strong network
motifs.

In order to compare the runtime of the two algorithms in
practice, we generated synthetic scale-free networks (expo-
nent γ = 2) with a varying number of nodes N , using the
methods of Itzkovitz et al. (2003) (Fig. 4). All the networks
had the same average connectivity (〈d〉 = 2.4). We set the
hub degree to D = 0.1N . The runtime of the exhaustive
enumeration algorithm scales as the total number of sub-
graphs. Since the total number of n-node subgraphs scales
as Dn−1, and D scales with N , the runtime of the exhaustive
enumeration method increases polynomially with the network
size as Nn−1. The runtime of the sampling method, in con-
trast, is almost independent of the network size or hub degree
(for a constant number of samples). The relative advantage
of the sampling method becomes more significant as network
size increases.

Algorithm convergence
We analyzed the results of the sampling method as a function
of the number of samples (Fig. 5A–D). The subgraph con-
centrations calculated by the sampling algorithm converged
to the fully enumerated concentrations. Different numbers
of samples were required for achieving good estimations for
different subgraphs and in different networks. All of the sim-
ulations we performed, on a variety of networks, showed that
the results converge toward the real values within ST = 105

samples or less (Fig. 5A–D). It is seen that even with a small
number of samples one can estimate reliably concentrations as
low as C = 10−5. It is possible to use convergence studies in
order to decide the required number of samples, as described
in Appendix 2.

DISCUSSION
The sampling method allows accurate counting of
rare, high-order subgraphs and motifs
We have presented a sampling algorithm to estimate subgraph
concentrations in a network. The sampling algorithm employs
analytical corrections for sampling biases. The runtime of this
algorithm is asymptotically independent of network size. The
algorithm is thus far more efficient, for the commonly occur-
ring case of networks with hubs, than exhaustive-enumeration
approaches.

The sampling method is able to detect subgraphs whose
concentration is very low with relatively few samples (e.g.
the concentration of motifs with c = 10−5 can be estim-
ated accurately with only 50 000 samples, Table 2—subgraphs
M9, M10). This effect is due to the presence of hubs in the net-
works. We can divide specific subgraphs in the network into

two types, according to their probability of being sampled
by the algorithm. The first type, which we refer to as ‘non-
hub subgraphs’, are all subgraphs that either do not contain
a hub node or contain a single hub node but of which the
other n − 1 nodes remain connected if the hub and its
edges are removed. The second type, which we refer to
as ‘hub subgraphs’, are all other subgraphs in the network.
Hub subgraphs, which are typically dominated by many hub
edges (edges touching a hub), are characterized by a small
probability of being sampled. The reason for the small prob-
ability is that for every sampling we necessarily reach the
hub before we complete an n-node set. Therefore the can-
didate edges list is large (of the order of the hub degree)
at least in one of the iterations, which leads to a small
sampling probability. This effect becomes stronger with lar-
ger subgraph size. In contrast, ‘non-hub subgraphs’ have
a higher probability of being sampled because there exists
at least one option to sample the subgraph without reach-
ing a hub or by reaching it last (when the hub is the n-th
node to be reached). These ‘non-hub subgraphs’ can be
picked up with even a relatively small number of samples
and are given a small weight by the analytical sampling
bias correction made by the algorithm. We conclude that:
(a) the probability of sampling non-hub subgraphs is higher
than that of hub subgraphs, and therefore such subgraphs
(although they may be rare) can be sampled with a much
smaller number of samples than expected based on their
concentration. (b) Hub subgraphs have a lower probability
of being sampled, but this is usually compensated for by
their high relative concentration. In both cases the correc-
tion for the non-uniformity makes sure that the concentration
estimation is correct. A fast convergence rate is observed in
both cases due to the higher probability of sampling non-
hub subgraphs and due to the high concentration of hub
subgraphs.

In particular, network motifs are reliably detected by the
algorithm with a surprisingly small number of samples. This
reflects the fact that in the networks we have analyzed (Milo
et al., 2002), the motifs are distributed throughout the net-
work and not only near hubs. This sampling advantage of
the method contributes to the efficiency of the algorithm
in estimating subgraph concentrations and in network motif
detection.

Network motifs can be detected even with a
relatively small number of samples
We find that network motifs can be detected even with a
number of samples smaller than 1/Ci where Ci is the motif
concentration. This is due to the fact that most motifs, espe-
cially in large networks, tended to have high Z-scores [Z =
(Creal −〈Crand〉)/σrand]. The Z-scores of network motifs tend
to be higher the larger the subgraph size and the larger the
network. Thus, for large networks and subgraphs, a high
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E. coli transcriptional networkA

Fig. 5. Convergence of the sampling method results on different networks. Concentrations calculated by the sampling method for different
subgraphs on different networks as a function of number of samples. The true concentration was found by exhaustive enumeration (horizontal
full line). We ran the algorithm 100 times for each number of samples (ST ) on each of the networks. The average concentration (circles)
and standard deviation are shown. Real concentrations ±10% are shown by dashed lines. It can be seen that the algorithm results on all four
networks, for all subgraphs, converge to the true concentrations. (A) Transcription network of E.coli. All the four five-node subgraphs were
found as network motifs. Despite the low concentration of the subgraphs, they are estimated accurately with a small error ratio even with
relatively few samples (105). The total number of connected five-node subgraphs in the network is 1.43 × 106. (B) Transcription network of
yeast (Saccharomyces cerevisiae). Three of the subgraphs (all but the bottom right subgraph) are found to be network motifs. Results of a high
concentration subgraph (bottom right) also converge rapidly to the real concentration. The total number of connected five-nodes subgraphs in
the network is 2.5 × 106. (C) Neuronal network of C.elegans. All the four four-node subgraphs were found as network motifs. This network
is characterized by relative high density (average degree = 15.5). The total number of connected four-node subgraphs is 8.75 × 105. (D)
Ythan Estuary food web. All the four five-node subgraphs were detected as network motifs. Total number of connected five-node subgraphs
is 9.4 × 105.
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Fig. 5. Continued.

cutoff of Z = 5 or 10 can be used to detect significance using
the sampling algorithm. Setting the Z-score cutoff to high
values is important also for avoiding false positives (which
can occur when 〈Crand〉 is underestimated due to very low
concentrations in the randomized networks) while not miss-
ing interesting motifs. The observed high Z-scores of network
motifs assures us that they can be detected, even when the
number of samples cannot provide a very high accuracy for
the actual concentrations. In typical cases, sampling suffi-
cient to provide 2-fold errors should be enough for purposes
of network motif detection.

Motif generalizations in the E.coli transcription
network
We employed the algorithm to detect high-n motifs in net-
works where we have previously analyzed only n = 3 and
4. In the E.coli network, the only three-node motif is the
FFL (Table 2; M4). The FFL was suggested as having a spe-
cific biological function in transcription networks. FFLs with
positive regulations have been shown experimentally to func-
tion as a sign-sensitive delay element (Shen-Orr et al., 2002,
Mangan et al., 2003). With other sign combinations, the
FFL can function as a pulse-generator or response accelerator
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Table 3. High-order motifs (six and seven nodes) in E.coli transcription network

Motifs of six and seven nodes in E.coli transcriptional network

L1 L2 L3 L4 L5

C = 0.002 Z = 17 C = 0.015 Z = 14 C = 0.005 Z = 20 C = 0.006 Z = 11 C = 0.077 Z = 11

L6 L7 L8 L9 L10

C < 0.000 Z = NA C = 0.001 Z = 30 C = 0.008 Z = 16 C = 0.003 Z = 210 C = 0.002 Z = NA

The table summarizes the significant high-order motifs in the E.coli transcription network. Sampling method was run with 200 000 and 500 000 samples for detecting six-node and
seven-node motifs, respectively. Detection of six-node and seven-node motifs in this network using the exhaustive enumeration algorithm was beyond reach. Concentrations (×10−3)
(‘C’) and Z-scores (‘Z’) of the motifs are shown. ‘NA’: in the random networks no appearances of this subgraph were detected, and therefore the Z-score could not be estimated.

(Mangan and Alon, 2003). At the level of four-node sub-
graphs, a motif appears that is a FFL with two output nodes
(M6). At the level of five-node subgraphs, a FFL with three
outputs appears (M7). This suggests that the proper generaliz-
ation of the FFL is a motif with n-output nodes (Kashtan et al.,
2004) (Table 3; L1, L6). Similarly, the four-node bi-fan motif
(M5) generalizes at the level of five-node motifs to patterns
with two inputs, and three outputs (M8) or three inputs and
two outputs (M9). These generalize at higher-order subgraphs
(Table 3; L2, L3, L7) to the motif termed ‘dense overlapping
regulons’ (Shen-Orr et al., 2002). These structures function
as hard-wired combinatorial decision-making circuits. Addi-
tional high-order motifs are summarized in Table 3. It can
be seen that most motifs are constructed from smaller motifs
following generalization rules (Table 3; L1, L6, L2, L3, L7)
or by combining motifs together (Table 3; L4, L5, L8–L10).
This suggests that small motifs and their generalizations can
be thought of as basic building blocks of this network.

High-order motifs in the neuronal network of
Caenorhabditis elegans
This network describes synaptic connections between neur-
ons in C.elegans. Two neurons are connected if at least
one synaptic connection exists between them. Applying the
exhaustive enumeration algorithm we have previously detec-
ted three and four node motifs (Milo et al., 2002). We applied
the sampling method to the neuronal network of C.elegans
for five- and six-node motif detection, which was beyond
reach using the exhaustive enumeration algorithm. We find in
this network, a different generalization form of the FFL—the
multi-input FFL (Table 4, E1). This motif can act as an

integration unit of several inputs (sensory neurons) preserving
the basic function of the FFL as a persistence detector. In
particular it can help detect a weak signal from one input if
a signal from another input has recently received (Kashtan
et al., 2004). We find other significant structures that are
formed from combinations of three and four-node motifs
(E2, E4). In addition, we find motifs (E5, E7) that are sim-
ilar in structure to two-layer perceptrons (Rosenblatt, 1962)
(feed-forward neural networks). Two-layer perceptrons can
implement functions such as XOR (Exclusive OR), which
cannot be implemented with single layer perceptrons (Hertz
et al., 1991). Multi-layer neurons circuit motifs (E5–E8,
E11–E14) can in principle perform complex computations
using suitable weights on the edges and different input
functions on the nodes (Ackley et al., 1985; Hertz et al., 1991).

It would be interesting to apply network motif analysis,
assisted by tools such as the sampling method, to metabolic
(Ouzounis and Karp, 2000; Wagner and Fell, 2001), signaling,
immunological and other biological networks.

The ability to estimate the subgraph content of a network
may be useful in a number of fields. For example, solv-
ing short-time diffusion or transport problems on networks
(Lovasz, 1993; Bosiljka and Rodgers, 2002; Kim et al., 2003)
will be aided by knowledge of the local structure statistics.
For motif detection, this sampling algorithm enables the ana-
lysis of much larger networks and larger subgraphs than was
feasible previously.

ACKNOWLEDGEMENTS
We thank N. Alon, S. Holmes, M. Naor, M.E.J. Newman,
R. Raz, R. Shamir and all members of our laboratory for

1755

 by guest on July 26, 2014
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/


N.Kashtan et al.

Table 4. High-order motifs (five and six nodes) in the neuronal network of the nematode C.elegans

Motifs of five and six nodes in C.elegans neuronal network

5 E1 E2 E3 E4

C = 0.071 Z = 12 C = 0.406 Z = 21 C = 0.324 Z = 230 C = 0.231 Z = 19

E5 E6 E7 E8

C = 0.170 Z = 20 C = 0.420 Z = 180 C = 0.343 Z = 22 C = 0.687 Z = 370

6 E9 E10 E11 E12 E13 E14

C = 0.018 C = 0.059 C = 0.166 C = 0.049 C = 0.093 C = 0.037
Z = NA Z = NA Z = 110 Z = NA Z = 100 Z = NA

Nodes represent neurons, and edges represent synaptic connectivity. These motifs were detected by the sampling algorithm with 100 000 samples (on the real and random networks).
Detection of five-node and six-node motifs in this network using the exhaustive enumeration algorithm was beyond reach. Concentrations (×10−3) (‘C’) and Z-scores (‘Z’) of the
motifs are shown. ‘NA’: in the random networks no appearances of this subgraph were detected, and therefore the Z-score could not be estimated. We note that the presented motifs
are only a partial list of all the five-node and six-node motifs that were detected.
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APPENDIX 1
Several notes related to the algorithm

(1) In order to efficiently maintain the candidate edge list
in the sampling process, we keep two global data struc-
tures: (1) a mapping matrix of all the edges in the
network to edge indexes. (2) An array of the largest
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hub edges. This is a binary array of size E (E is the
number of edges in the network), where only the hub
edges have value 1 in the appropriate indexes.

Whenever a hub edge is picked in the sampling pro-
cess, we use the global hub edges array as a basis for the
candidate edge array and operate all the required opera-
tions on this array. Such an implementation reduces
the complexity of maintaining the candidate edge
lists per sample from O(Dn) to O(n2) at a cost of
O(E)additional memory.

(2) Note that in principle the algorithm could be made more
efficient by avoiding repeated sampling of the same sub-
graph. In practice, however, the number of samples is
much smaller than the total number of subgraphs, and
thus the added efficiency is small.

(3) In the present study, unlike (Milo et al., 2002), the ran-
domized networks used to detect n-node motifs were
not constrained to have the same number of (n−1)-node
subgraphs as the real network.

APPENDIX 2
Determining the number of samples by convergence
The problem of deciding ‘How many samples are enough?’
was well explored in random sampling from databases
(Flajolet and Martin, 1985; Olken and Rotem, 1995;
Chaudhuri et al., 1998; Gibbons, 2001) and estimating statist-
ics on a sampled population (Bunge and Fitzpatrick, 1993). It
was shown to be a hard problem (Chaudhuri et al., 1998). The
number of samples required for good estimation with a high
probability is hard to approximate when the concentration
distribution is not known a priori.

To estimate the number of samples required for conver-
gence we used an approach similar to the adaptive sampling
described by Chaudhuri et al. (1998).

Let Vi = (ĉi
1, ĉi

2, . . . , ĉi
k) and Vi−1 = (ĉi−1

1 , ĉi−1
2 , . . . , ĉi−1

k )

be the vectors of estimated subgraphs concentration after itera-
tion i and iteration i − 1, respectively. We define the average
instantaneous convergence rate as

CGavg = 1

k

k∑
j=1

∣∣∣ĉi
j − ĉi−1

j

∣∣∣
0.5(ĉi

j + ĉi−1
j )

(∀ĉi
j > Cmin)

and the maximal instantaneous convergence rate as

CGmax = max
j




∣∣∣ĉi
j − ĉi−1

j

∣∣∣
0.5(ĉi

j + ĉi−1
j )

∣∣∣∣ ∀ĉi
j > Cmin


 .

By setting the thresholds of CGavg, CGmax and the value of
Cmin we can adjust the required accuracy of the results and
the minimum concentration of subgraphs we are interested
in. Clearly, there is a tradeoff between the accuracy and the
required number of samples. We begin with a small num-
ber of samples, and at each iteration we increase the number
of samples and merge the results. We repeat the iterations
until we get a small enough difference in the concentra-
tions of all subgraphs between the current iteration and the
previous one.

An alternative way of evaluating the quality of the results
is to observe each subgraph type result separately. For each
subgraph type, we can get an idea of the confidence of the
estimation by its convergence rate and its number of hits (the
number of times a certain subgraph type was sampled).

APPENDIX 3
Network databases
(N = number of nodes, E = number of edges).
Self edges were excluded. Transcription network of E.coli
(Shen-Orr et al., 2002), version 1.1 (N = 423, E =
519) available at http://www.weizmann.ac.il/mcb/UriAlon/.
Transcription network of yeast (S.cerevisiae) (Milo et al.,
2002), version 1.3 (N = 685, E = 1052) available
at http://www.weizmann.ac.il/mcb/UriAlon/ was based on
selected data from Costanzo et al. (2001) and Milo et al.
(2002). Neuronal synaptic connection network of C.elegans
(N = 280, E = 2170) was based on White et al. (1986) as
arranged in Achacoso and Yamamoto (1992). The network
was compiled with a cutoff of one synapse for connections
between neurons. Target muscle cells were excluded. WWW
network of hyperlinks between Web pages in the ndu domain
(N = 3.25 × 105, E = 1.46 × 106) (Barabasi and Albert,
1999). Food web of birds, fishes and invertebrates, Ythan
Estuary (N = 83, E = 391) (Williams and Martinez,
2000).
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